Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Combustion Characteristics in a Constant Volume Chamber of Diesel Blended with HTL

2019-04-02
2019-01-0578
There are a few different ways in which biofuels can be sourced, with the most popular coming from agricultural sources. An alternative approach is to utilize biowaste. An estimated 20 million dry tons of volatile organic compounds, or biowaste, is annually deposited in US municipal wastewaters. Most of this biowaste energy content is not recovered and, as a result, the biowaste could be a massive potential source of renewable energy. Biocrude diesel is converted from wet biowaste via hydrothermal liquefaction (HTL). Three types of feedstocks (algae, swine manure, and food processing waste) were converted into biocrude oil via HTL. From the previous experiments done in an AVL 5402 single-cylinder diesel engine, it was observed that the presence of 20% of HTL in the blend performed similarly during combustion to pure diesel. By studying these mixtures in a constant volume chamber, these observations could be compared to the results in the diesel engine.
Technical Paper

Energy Consumption Optimization for the Electric Vehicle Air Conditioning Using the Condensate Water

2019-04-02
2019-01-0148
In summer, the relatively low temperature water condenses in the evaporator when the vehicle air-conditioning (AC) is running. At present, the vehicle AC condensate water without well utilization is directly wasted. The condenser’s thermal transfer performance has a great influence on the AC performance, and to increase the convective heat transfer coefficient (CHTC) is the key to its design. In this paper, a method of using atomized condensate water (CW) to enhance the condenser’s thermal transfer performance is proposed, which can make the most of the CW's cold energy. It achieves the reuse of CW and increases the condenser’s CHTC. First, the CW flow calculation model in the evaporator and the calculation model of the condenser enhanced thermal transfer using atomized CW are both set up. The influence of the evaporation degree of atomized CW particles in the air on the enhancement effect is comprehensively considered.
Technical Paper

Development of Model Predictive Control Strategy of SCR System for Heavy-Duty Diesel Engines with a One-State Control-Oriented SCR Model

2018-09-10
2018-01-1763
Urea-based selective catalytic reduction (SCR) of nitric oxides (NOx) is a key technology for heavy-duty diesel engines to achieve the increasingly stringent NOx emission standards. The aqueous urea injection control is critical for urea-SCR systems in order to achieve high NOx conversion efficiency while restricting the tailpipe ammonia (NH3) slip. For Euro VI emission regulation, an advanced control strategy is essential for SCR systems since its NOx emission limits are tighter and test procedure are more stringent compared to Euro IV and Euro V. The complex chemical kinetics of the SCR process has motivated model-based control design approaches. However, the model is too complex to allow real-time implementation. Therefore, it is very important to have a reduced order model for SCR control system.
Technical Paper

Application of Vortex Control to an Automotive Transcritical R744 Ejector Cycle

2018-04-03
2018-01-0060
Expansion work recovery by two-phase ejector is known to be beneficial to vapor compression cycle performance. However, one of the biggest challenges with ejector vapor compression cycles is that the ejector cycle performance is sensitive to working condition changes which are common in automotive applications. Different working conditions require different ejector geometries to achieve maximum performance. Slightly different geometries may result in substantially different COPs under the same conditions. The ejector motive nozzle throat diameter (motive nozzle restrictiveness) is one of the key parameters that can significantly affect ejector cycle COP. This paper presents the experimental results of the application of a new two-phase nozzle restrictiveness control mechanism to an automotive transcritical R744 ejector cycle.
Technical Paper

Parallel Thermal Management System of the Water Medium Retarder

2018-04-03
2018-01-0777
The thermal management system of the water medium retarder using engine coolant (water and ethylene glycol) as transmission medium, omits oil-water heat exchanger in the structure. When the hydraulic retarder is operated, the valve is connected with the retarder and water pump, and then the engine coolant enters the working chamber. The kinetic energy of the vehicle is converted into internal energy of the coolant, and the heat is discharged to the external environment through the engine thermal management system. The braking torque of the water medium hydraulic retarder is determined by the water medium flow rate in the working chamber. The smaller the valve opening degree, the greater the braking torque and the faster the heating transmission fluid. Small valve opening is not conducive to the loss of heat. It will affect the normal working of the engine and hydraulic retarder.
Technical Paper

The Measures of Improving Power Generation Stability for Harvesting Automobile Exhaust Energy

2018-04-03
2018-01-1367
The automobile exhaust energy can be recovered by the thermoelectric module generator(TEG). Owing to the complex urban traffic, the exhaust gas’s temperature fluctuations are resulted, which means the unstable hot-end temperature of the TEG. By installing solid heat capacity material(SHCM) to the area between the outer wall of the exhaust pipe and the TEG, it is possible to appropriately reduce the temperature fluctuation, but there is still a fluctuation of the TEG’s power output. Then by adding voltage filter circuit (VFC) after the TEG, the power output stability can be improved. This research uses SHCM and VFC to improve the stability of the exhaust gas generation. Firstly, the three-dimensional heat transfer model of the exhaust pipe thermoelectric power generation system is established. The heat capacity materials with low thermal resistance and high heat capacity were selected as the research object based on previous research.
Technical Paper

The Research of the Heavy Truck’s Warming System

2017-10-08
2017-01-2221
It’s not easy to start the engine in winter, especially in frigid highlands, because the low temperature increases the fuel’s viscosity, decreasing the lubricating oil flow ability and the storage performance of battery. Current electrical heating method can improve the engine starting performance in low temperature condition, but this method adds an external power to the engine, leading to the engine cannot maintain an efficient energy utilization. A warming device using the solar energy is designed to conserve the energy during the daytime, and directly warm up the engine at the time when the engine turns off for a long time, especially during the night. A solar collector installed on the top of the vehicle is used to convert the solar energy to the thermal energy, which is then transferred to the heat accumulator that contain the phase-change medium which can increase the heat storage performance.
Technical Paper

Comparison Study on Combustion and Emission Characteristics of ABE/IBE-Diesel Blends in a Common-Rreail Diesel Engine

2017-10-08
2017-01-2321
Bio-butanol has been considered as a promising alternative fuel for internal combustion engines due to its advantageous physicochemical properties. However, the further development of bio-butanol is inhibited by its high recovery cost and low production efficiency. Hence, the goal of this study is to evaluate two upstream products from different fermentation processes of bio-butanol, namely acetone-butanol-ethanol (ABE) and isopropanol-butanol-ethanol (IBE), as alternative fuels for diesel. The experimental comparison is conducted on a single-cylinder and common-rail diesel engine under various main injection timings (MIT) and equivalent engine load (EEL) conditions. The experimental results show that ABE and IBE significantly affect the combustion phasing. The start of combustion (SOC) is retarded when ABE and IBE are mixed with diesel. Furthermore, the ABE/IBE-diesel blends are more sensitive to the changes in MIT compared with that of pure diesel.
Technical Paper

Development of Model Based Closed Loop Control Strategy of SCR System for Heavy-Duty Diesel Engines

2017-10-08
2017-01-2383
Urea selective catalytic reduction (SCR) is a key technology for heavy-duty diesel engines to meet the increasingly stringent nitric oxides (NOx) emission limits of regulations. The urea water solution injection control is critical for urea SCR systems to achieve high NOx conversion efficiency while keeping the ammonia (NH3) slip at a required level. In general, an open loop control strategy is sufficient for SCR systems to satisfy Euro IV and Euro V NOx emission limits. However, for Euro VI emission regulation, advanced control strategy is essential for SCR systems due to its more tightened NOx emission limit and more severe test procedure compared to Euro IV and Euro V. This work proposed an approach to achieve model based closed loop control for SCR systems to meet the Euro VI NOx emission limits. A chemical kinetic model of the SCR catalyst was established and validated to estimate the ammonia storage in the SCR catalyst.
Technical Paper

Driving Force Coordinated Control of Separated Axle Hybrid Electric Dump Truck

2017-10-08
2017-01-2462
Due to the increase of mining production and rising labor costs, manufacturers of construction and mining equipment are engaged in developing large tonnage mining truck with good dynamic performance and high transport efficiency. This paper focuses on the improvement of the dynamic performance of a 52t off-highway dump truck. According to the characteristics of its operating cycle, electric auxiliary drive system is installed in the front axle aiming at improving the utilization rate of ground adhesion. The new all-wheel drive hybrid electric system makes it possible for dump truck transports at a higher velocity. Both the conventional dump truck model and the new all-wheel drive hybrid truck model are built based on the AVL-Cruise platform. Meanwhile, under the premise of enough dynamic performance, fuel consumption can be minimized by collaborative optimization in Isight.
Technical Paper

A Comparative Study on Fuel Economy for CVT and 9-speed AT based Vehicles

2017-10-08
2017-01-2435
It is well-known that, compared with automatic transmissions (ATs), continuously variable transmission (CVT) shows advantages in fuel saving due to its continuous shift manner, since this feature enables the engine to operate in the efficiency-optimized region. However, as the AT gear number increases and the ratio gap narrows, this advantage of CVT is challenged. In this paper, a comparative study on fuel economy for a CVT based vehicle and a 9-speed automatic transmission (AT) based vehicle is proposed. The features of CVT and AT are analyzed and ratio control strategies for both the CVT and 9-speed AT based vehicles are designed from the view point of vehicle fuel economy, respectively. For the 9-speed AT, an optimal gear shift map is constructed. With this gear shift map, the optimal gear is selected as vehicle velocity and driving condition vary.
Technical Paper

Dynamic Modeling and State Estimation for Multi-In-Wheel-Motor-Driven Intelligent Vehicle

2017-09-23
2017-01-1996
Dynamic modeling and state estimation are significant in the trajectory tracking and stability control of the intelligent vehicle. In order to meet the requirement of the stability control of the eight-in-wheel-motor-driven intelligent vehicle, a full vehicle dynamics model with 12 degrees of freedom, including the longitudinal, lateral, yaw and roll motion of the body, and rotational motion of 8 wheels, is established for the research of the intelligent vehicle in this paper. By simulation with MATLAB/SIMULINK and by comparison with the TruckSim software, the reliability and practicality of the dynamics model are verified. Based on the established dynamics model, an extended Kalman filter (EKF) state observer is proposed to estimate the vehicle sideslip angle, roll angle and yaw rate, which are the key parameters to the stability control of the intelligent vehicle.
Technical Paper

Development and Test of ESC Controller with Driver-In-the-Loop Platform

2017-09-23
2017-01-1993
This paper presents a Driver-In-the-Loop (DIL) bench test system for development of ESC controller. The real-time platform is built-up based on NI/PXI system and the real steering/throttle/braking actuator. In addition, the CarSim provides the vehicle model and the animator for virtual driving environment. A hierarchical ESC controller is proposed in MATLAB/Simulink then download into PXI. In the upper motion controller, the sliding mode theory is adopted and the logic threshold algorithm is used in the lower slip controller. Finally, ESC test is implemented under typical conditions by DIL and Model-In-the-Loop (MIL). The results show that, DIL could make up the shortage of driver model which can’t accurately simulate the emergency response of real driver. Therefore, DIL test could verify the ESC controller more accurately and effectively with considering the human-vehicle-road environment.
Technical Paper

Effect of Temperature on Braking Efficiency Stability of Magnetorheological Fluid Auxiliary Braking Devices

2017-09-17
2017-01-2510
Fluid auxiliary braking devices can provide braking torque through hydraulic damping, fluid auxiliary braking devices can also convert vehicular inertia energy into transmission fluid heat energy during the braking, which can effectively alleviate the work pressure of the main brake. Traditional hydraulic auxiliary braking devices use transmission fluids to transmit torque, however, there is a certain lag effect during the braking. The magnetorheological fluid (MR fluid) can also be used to transmit torque because it has the advantages of controlling braking torque linearly and responding fast to the magnetic field changed. The temperature of MR fluid will increase when the vehicle is engaged in continuous braking. MR fluid temperature changes will cause a bad influence on the efficiency stability of auxiliary braking.
Technical Paper

The TEG Hot-End Heat Capacity’s Effect on the Power Output Stability for Harvesting Automobile Exhaust Energy

2017-03-28
2017-01-0160
While the car ownership increasing all over the world, the unutilized thermal energy in automobile exhaust system is gradually being realized and valued by researchers around the world for better driving energy efficiency. For the unexpected urban traffic, the frequent start and stop processes as well as the acceleration and deceleration lead to the temperature fluctuation of the exhaust gas, which means the unstable hot-end temperature of the thermoelectric module generator (TEG). By arranging the heat conduction oil circulation at the hot end, the hot-end temperature’s fluctuation of the TEG can be effectively reduced, at the expense of larger system size and additional energy supply for the circulation. This research improves the TEG hot-end temperature stability by installing solid heat capacity material(SHCM) to the area between the outer wall of the exhaust pipe and the TEG, which has the merits of simple structure, none energy consumption and light weight.
Technical Paper

An Optical Investigation of Multiple Diesel Injections in CNG/Diesel Dual-Fuel Combustion in a Light Duty Optical Diesel Engine

2017-03-28
2017-01-0755
Dual-fuel combustion combining a premixed charge of compressed natural gas (CNG) and a pilot injection of diesel fuel offer the potential to reduce diesel fuel consumption and drastically reduce soot emissions. In this study, dual-fuel combustion using methane ignited with a pilot injection of No. 2 diesel fuel, was studied in a single cylinder diesel engine with optical access. Experiments were performed at a CNG substitution rate of 70% CNG (based on energy) over a wide range of equivalence ratios of the premixed charge, as well as different diesel injection strategies (single and double injection). A color high-speed camera was used in order to identify and distinguish between lean-premixed methane combustion and diffusion combustion in dual-fuel combustion. The effect of multiple diesel injections is also investigated optically as a means to enhance flame propagation towards the center of the combustion chamber.
Technical Paper

NOx Reduction in Compression-Ignition Engine by Inverted Ignition Phi-Sensitivity

2017-03-28
2017-01-0749
A new approach of NOx reduction in the compression-ignition engine is introduced in this work. The previous research has shown that during the combustion stage, the high temperature ignition tends to occur early at the near-stoichiometric region where the combustion temperature is high and majority of NOx is formed; Therefore, it is desirable to burn the leaner region first and then the near-stoichiometric region, which inhibits the temperature rise of the near-stoichiometric region and consequently suppresses the formation of NOx. Such inverted ignition sequence requires mixture with inverted phi-sensitivity. Fuel selection is performed based on the criteria of strong ignition T-sensitivity, negligible negative temperature coefficient (NTC) behavior, and large heat of vaporization (HoV).
Technical Paper

Effect of Acetone-Gasoline Blend Ratio on Combustion and Emissions Characteristics in a Spark-Ignition Engine

2017-03-28
2017-01-0870
Due to the increasing consumption of fossil fuels, alternative fuels in internal combustion engines have attracted a lot of attention in recent years. Ethanol is the most common alternative fuel used in spark ignition (SI) engines due to its advantages of biodegradability, positively impacting emissions reduction as well as octane number improvement. Meanwhile, acetone is well-known as one of the industrial waste solvents for synthetic fibers and most plastic materials. In comparison to ethanol, acetone has a number of more desirable properties for being a viable alternative fuel such as its higher energy density, heating value and volatility.
Technical Paper

A Numerical Study on the Effects of Hot EGR on the Operation of Natural Gas Engine Ignited by Diesel-Butanol Blends

2017-03-28
2017-01-0760
Butanol, which is a renewable biofuel, has been regarded as a promising alternative fuel for internal combustion engines. When blended with diesel and applied to pilot ignited natural gas engines, butanol has the capability to achieve lower emissions without sacrifice on thermal efficiency. However, high blend ratio of butanol is limited by its longer ignition delay caused by the higher latent heat and higher octane number, which restricts the improvement of emission characteristics. In this paper, the potential of increasing butanol blend ratio by adding hot exhaust gas recirculation (EGR) is investigated. 3D CFD model based on a detailed kinetic mechanism was built and validated by experimental results of natural gas engine ignited by diesel/butanol blends. The effects of hot EGR is then revealed by the simulation results of the combustion process, heat release traces and also the emissions under different diesel/butanol blend ratios.
Journal Article

Investigation of Deposits in Urea-SCR System Based on Vehicle Road Test

2017-03-14
2017-01-9275
In vehicles with urea-SCR system, normal operation of the urea-SCR system and engine will be influenced if there are deposits appearing on exhaust pipe wall. In this paper, a commercial vehicle is employed to study the influence factors of deposits through the vehicle road test. The results show that, urea injection rate, temperature and flow field have impacts on the formation of deposits. When decreasing the urea injection rate of calibration status by 20%, the deposit yield would reduce by 32%. If the ambient temperature decreased from 36 °C to 26 °C, the deposit yield would increase by 95%. After optimizing the exhaust pipe downstream of the urea injector by removing the step surface, only a few flow marks of urea droplets are observed on the pipe wall, and no lumps of deposits existing.
X